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Variational principle for frozen-in vorticity interacting with sound waves

V. P. Ruban
L. D. Landau Institute for Theoretical Physics, 2 Kosygin Street, 119334 Moscow, Russia

~Received 15 May 2003; published 8 October 2003!

General properties of conservative hydrodynamic-type models are treated from positions of the canonical
formalism adopted for liquid continuous media. A variational formulation is found for motion and interaction
of frozen-in localized vortex structures and acoustic waves in a special description where dynamical variables
are, besides the Eulerian fields of the fluid density and the potential component of the canonical momentum,
also the shapes of frozen-in lines of the generalized vorticity. This variational principle can serve as a basis for
approximate dynamical models with reduced number of degrees of freedom.
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In many physical systems the motion of continuous liqu
media can be approximately described by hydrodynam
type equations having a remarkable mathematical struc
based on an underlying variational least action principle
the Lagrangian description~see, for instance, Refs.@1–6#,
and references therein!. The characteristic feature of th
hydrodynamic-type systems is that they possess an infi
number of specific integrals of motion related to t
freezing-in property of canonical vorticity. Thus, hydrod
namic equations describe an interaction between ‘‘soft’’
grees of freedom, the frozen-in vortices, and ‘‘hard’’ degre
of freedom, the acoustic modes. However, in the Euler
description of flows by the density and by the velocity~or the
canonical momentum! fields, the vorticity and the soun
waves are ‘‘mixed.’’ Another point is that due to unresolv
freezing-in constraints, the Eulerian equations of motion
not follow directly from a variational principle~see Ref.@4#
for discussion!.

This work has two main purposes. The first purpose is
introduce such a general description of ideal flows that s
and hard degrees of freedom are explicitly separated and
frozen-in property of the vorticity is taken into account. T
second purpose is to formulate a principle of least action
this representation. As a result, the acoustic waves will
described by the Eulerian fields of the fluid density and
potential component of the canonical momentum, while
canonical vorticity will be represented as a continuous d
tribution of frozen-in vortex lines~the so-called formalism o
vortex lines@7–10#, which previously was applied only to
static density profiles!. The Lagrangian of this dynamica
system is a nontrivial unification of the canonical Lagrang
corresponding to purely potential flows, with a generaliz
Lagrangian of vortex lines.

Generalized Euler equation.Typically in a complex clas-
sical system on the microscopic level there are permane
existing particles of several kinds, for instance, molecules
a gas or the electrons and ions in a plasma. In a gen
situation, different components can have different mac
scopically averaged velocities near the same point and/or
ferent relative concentrations in separated points. In s
cases, each population of the complex fluid should be ta
into consideration individually, for example, as in the wide
known two-fluid plasma model discussed later in this wo
For simplicity we first consider the case when the mac
scopic velocities of all components coincide and mutual
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lations between the concentrations are homogeneous in s
and time, so the macroscopically averaged physical stat
the medium at a given pointr5(x,y,z) at a given time mo-
ment t is completely determined by two quantities, name
by a scalarn(r,t), which is proportional to the concentratio
of conservative particles of a definite sort, and by a vec
j(r,t), the corresponding density of flow. The fieldj is re-
lated by the continuity equation to the fieldn:

nt1div j50, ~1!

where the subscript is used to denote the partial derivativ
is clear thatj5nv, wherev(r,t) is the macroscopic velocity
field. Let each point of the fluid medium be marked by
label a5(a1 ,a2 ,a3), so the mappingr5x(a,t) is the full
Lagrangian description of the flow. The less exhaustive
scription of the flow by the fieldsn(r,t) and j(r,t) is com-
monly referred as the Eulerian description. The relations
tween the Eulerian fields and the Lagrangian mapping are
following:

n~r,t !5E d„r2x~a,t !…da, ~2!

j~r,t !5E d~r2x~a,t !!xt~a,t !da, ~3!

and they satisfy the continuity equation automatically.
Neglecting all dissipative processes~due to viscosity, dif-

fusion, etc.! and assuming that internal properties of the flu
are homogeneous~such as the specific entropy in adiaba
flows or the temperature in isothermal flows!, the trajectories
r5x(a,t) of fluid elements are determined by the variation
principle d(*L̃dt)/dx(a,t)50, with the Lagrangian of a
special general form actually depending only on the Euler
fields n(r,t) and j(r,t):

L̃$x~a!,xt~a!%5L$n~r!,j~r!%un$x%, j $x,xt%
. ~4!

Here the braces$•••% are used to denote functional arg
ments as against usual scalar or vector arguments tha
denoted by the parentheses (•••). The equation of motion,
corresponding to Lagrangian~4!, has a remarkable genera
structure. The usual variational Euler-Lagrange equation
©2003 The American Physical Society02-1
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d

dt

dL̃
dxt~a!

5
dL̃

dx~a!

in the Eulerian representation has the form~generalized Eu-
ler equation!

]

]t S dL
d j D5F j

n
3curlS dL

d j D G1“S dL
dn D , ~5!

where the variational derivativedL/d j is taken at fixed
n(r,t), while the variational derivativedL/dn is taken at
fixed j(r,t) ~compare with Refs.@6–9#, where this equation
is written in terms ofn and v and thus looks different!.
Equation~5! together with the continuity equation~1! com-
pletely determine the time evolution of the fieldsn(r,t) and
j(r,t) .

Hamiltonian variables.In the Hamiltonian description
adopted for fluids as it is discussed in Refs.@7–9,11#, instead
of the field j, the variational derivative of the Lagrangia
p5dL/d j, is used~the canonical momentum!. The Hamil-
tonian functional is defined as the Legendre transformati

H$n,p%[E S dL
d j

• jDdr2L, ~6!

wherej should be expressed in terms ofp andn. The equa-
tions of motion ~5! and ~1! now have the noncanonica
Hamiltonian structure@4,7,8#:

pt5F1

n S dH
dp D3curlpG2“S dH

dn D , ~7!

nt52divS dH
dp D . ~8!

These equations can be written aspt5$p,H% and nt
5$n,H%, where the noncanonical Poisson bracket is giv
by the following expression~see Refs.@2,4,7# and references
therein about details!:

$F,H%5E FdH
dn S“•

dF
dpD2

dF
dn S“•

dH
dp D Gdr

1E S curlp

n
•FdF

dp
3

dH
dp G Ddr. ~9!

First example: Eulerian hydrodynamics.Let us consider
the usual Eulerian hydrodynamics. In this simple case,n is
the density of the fluid and the Lagrangian is the differen
between the total macroscopic kinetic energy and the t
potential energy including the thermal internal energy:

LE5E S j2

2n
2«~n!2nU~r,t ! Ddr,

where«(n) is the density of the internal energy andU(r,t) is
the potential of an external force.
04730
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The canonical momentum coincides with the veloc
field, p5 j/n5v, and the Hamiltonian is the total energy e
pressed in terms ofn andp:

HE5E S n
p2

2
1«~n!1nU~r,t ! Ddr.

The equations of motion~7! and ~8! with this Hamiltonian
take the known form

pt5@p3curlp#2“~p2/2 1«8~n!1U !, nt1div~np!50.

Second example: relativistic fluid dynamics.In the general
relativity the continuity equation is~see Ref.@1#!

1

A2g

]

]xi SA2gñ
dxi

ds D50,

wheredxi /ds is the 4-velocity of the fluid element passin
through a point (t,r), the scalarñ is the concentration of
conservative particles in the locally comoving frame of re
erence, andg5detigiki is the determinant of the metri
tensor gik(t,r). Therefore n5A2gñ(dt/ds), j a

5A2gñ(dxa/ds), and

ñ5A~g00n
212g0an ja1gab j a j b!/A2g. ~10!

The invariant expression for the action functional implies t
Lagrangian in the form~compare with Refs.@7,9,10#!

Lg.r.52E «S Ag00n
212g0an ja1gab j a j b

A2g
DA2gdr, ~11!

where «(ñ) is the relativistic density of the internal fluid
energy including the rest energy~the equation of state!. The
canonical momentum

pa5«8~ ñ!
2~g0an1gab j b!

Ag00n
212g0an ja1gab j a j b

depends in a complicated manner onn, j, and gik . This
makes it impossible, in general case, to present an analy
expression for the corresponding Hamiltonian function
but, of course, it cannot cancel the existence of the Ham
tonian in mathematical sense.

Third example: Lagrangian functional of the two-flu
plasma model.Analogously, multicomponent hydrodynam
cal models can be investigated, where several fieldsn(q) and
j(q) are present corresponding to different sorts of partic
with q51,2, . . . ,Q. The Hamiltonian noncanonical equa
tions of motion for such models have the same general st
ture as discussed above, and they should be written for e
component. Here we briefly discuss how to derive the L
grangian functional for the physically important two-flu
~nonrelativistic! plasma model~for more details see Ref
@11#!. Let us consider a set of electrically charged classi
point particles with massesma and electric chargesea . In
Ref. @1#, the microscopic Lagrangian of such a system
presented, which is approximately valid up to the seco
order in v/c, since excitation of the free electromagne
field by moving charges is not significant:
2-2
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Lmicro5(
a

mava
2

2
2

1

2 (
a5” b

eaeb

ura2rbu
1(

a

mava
4

8c2

1
1

4c2 (
aÞb

eaeb

ura2rbu @va•vb1~va•nab!~vb•nab!#.

~12!

Here ra(t) are the positions of the point chargesea , va(t)
[ ṙa(t) are their velocities, andnab(t) are the unit vectors in
the direction betweenea andeb . The first double sum in Eq
~12! corresponds to the electrostatic interaction, while
second double sum describes the magnetic interaction
quasistationary magnetic field~the case without externa
electric and magnetic fields is considered!. It is important
that for a system with huge number of particles the magn
energy can be of the same order~or even larger! as the mac-
roscopic kinetic energy produced by the first ordinary sum
Eq. ~12!, while the terms of the fourth order on the velociti
are often negligible.

In the simplest case, plasma contains identical ions~each
with the massZM and with the charge1Ze) and the elec-
trons ~massm, charge2e). Then, the system will be ap
proximately described in terms of the concentrationn(r,t) of
electrons and the densityj(r,t) of their flow, and correspond
ing ion fieldsN(r,t) and J(r,t), normalized to the elemen
tary electric chargee, soN5ZNi .

Neglecting all dissipative processes that take place du
collisions of the particles, we derive from Eq.~12! the fol-
lowing Lagrangian functional

L2f5E F M

2N
J21

m

2n
j21

2pe2

c2
@curl21~J2 j!'#2Gdr

2
e2

2 E E dr1dr2

ur12r2u @N~r1!2n~r1!#@N~r2!2n~r2!#

2E FTenln
n

f ~Te!
1Ti

N

Z
ln

N

ZF~Ti !
Gdr, ~13!

where (J2 j)' is the divergence-free component of the to
current. The magnetic energy*(B2/8p)dr is included into
this Lagrangian, where the magnetic field isB
5(4pe/c)curl21(J2 j)' . The terms with Tenln n and
(Ti /Z)Nln N ~approximate expressions for the densities
the thermal free energy! have been introduced in order th
the macroscopic equations of motion contain the press
terms such as2¹p/n @see the last term in Eq.~5!#, where
p'nTe is the pressure of the hot electron gas, which is s
posed to be isothermal with a temperatureTe .

Interaction between frozen-in vortex lines and acous
modes.The Hamiltonian noncanonical equations~7! and ~8!
do not follow directly from a variational principle. The math
ematical reason for this is a degeneracy of the correspon
noncanonical Poisson bracket~9!, which is discussed, fo
instance, in Refs.@2,4#. The degeneracy results in th
frozen-in property for the canonical vorticity fieldv
5curlp. However, representations of the canonical mom
04730
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tum in terms of auxiliary variables exist that fix topologic
structure of vortex lines, and then a variational formulati
becomes possible. A known example of such auxiliary va
ables is the Clebsch variables~see, e.g., Refs.@2,4,12,13# for
discussion and more references!, whenp5“w1(l/n)“m,
and (n,w), (l,m) are two pairs of canonically conjugat
variables. But the Clebsch representation usually is not s
able for studying localized vortex structures such as vor
filaments. Below we consider another representation for
canonical momentum field, when dynamical variables are
shapes of vortex lines. For a nearly static density profilen
'n0(r), such description was used in Refs.@8,9# to study
slow flows in spatially inhomogeneous systems. Now we
going to introduce a variational formulation valid for th
general case, since the functionn(r,t) is also an unknown
variable. It will be demonstrated that variational princip
with Lagrangian~23! determines correct equations of motio
for the shapes of frozen-in vortex lines, for the potent
component of the canonical momentum field, and for
density profilen(r,t).

So, we decompose the momentum field onto the poten
component and the divergence-free component:

p~r,t !5“w~r,t !1curl21v~r,t !. ~14!

Accordingly, the fieldj is decomposed:

j5
dH
dp

5
dH
dpi

1curl
dH
dv

[ ji1 j' . ~15!

Obviously, the continuity equation results in the relation

“D21nt52 ji . ~16!

For the frozen-in vorticity field we use the so-called vo
tex line representation. In the simplest form when the lin
are closed, it reads as follows~for details and discussion se
Ref. @8#!,

v~r,t !5E
N

d2n R d„r2R~n,j,t !…Rj~n,j,t ! dj

5
Rj~n,j,t !

deti]R/]~n,j!i U
R5r

, ~17!

where the label n5(n1 ,n2)PN belongs to a two-
dimensional manifoldN and singles out an individual vorte
line, while an arbitrary longitudinal parameterj determines a
point on the line. The Jacobian of the mappingR(n,j,t) is
denoted as deti]R/](n,j)i5(@Rn1

3Rn2
#•Rj).

The divergence-free component of the canonical mom
tum field is now given by the expression

p'5curl21v~r,t !5E @Rj3~r2R!#d2ndj

4pur2Ru3
. ~18!

The vorticity variationdv(r,t), induced by a variation
dR(n,j,t) of the vortex lines, takes the form@8#
2-3



ry
th

.
ll

of

-

n

xi-
ced
ree-

e

one
tex

ral

il-
of

ls

of

BRIEF REPORTS PHYSICAL REVIEW E68, 047302 ~2003!
dv~r,t !5curlrEN
d2n R d~r2R~n,j,t !!@dR3Rj# dj, ~19!

which follows directly from Eq.~17!.
It should be noted that in the case of arbitra

topology of the vortex lines, one has to just replace in
above expressions R(n,j,t)→R(a,t) and Rj d2n dj
→„v0(a)•“a…R(a,t)da, see Ref.@8#.

Equation~19! results in the important relations@8#

dH
dR

5@Rj3 j'~R!#, ~20!

vt5curlrF Rt3Rj

deti]R/]~n,j!i GU
R5r

. ~21!

Therefore the equation of motion for the vorticity,vt
5curlr@v3v#, with v5(dH/dp)/n, means

F Rt3Rj

deti]R/]~n,j!i GU
R5r

5F ji1 j'
n

3vG1“ rC~n!, ~22!

whereC(n1 ,n2) is some arbitrary function of two variables
A possible choice isC50, but for general purposes we wi
consider belowCÞ0.

Using Eqs.~15!, ~16!, ~20!, and~22!, one can verify that if
the quantitiesR(n,j,t), n(r,t), andw(r,t) obey equations of
motion corresponding to the following Lagrangian:

Lv-s52E nw tdr2H$n,“w1curl21v$R%%

1E d~r2R~n,j,t !!~@Rj3Rt#•“ rD r
21n!d2n dj dr

2E C~n1 ,n2!~@Rn1
3Rn2

#•Rj!n~R!d2n dj, ~23!

then Eqs.~7! and ~8! are satisfied. Indeed, the variation
*Lv-sdt by dR(n,j,t) gives the equation

@Rj3Rt# n~R!2@Rj3 ji~R!#

5
dH

2n~R!detI ]R I¹rC~n!, ~24!

dR ] n,j

nt

04730
e

which is easily recognized as Eq.~22!. Variation bydn(r,t)
results in the potential component of Eq.~7!:

2w t1D r
21

“ r•F Rt3Rj

deti]R/]~n,j!i GU
R5r

5
dH
dn

1C.

Finally, the variation bydw(r,t) gives the continuity equa
tion nt1“• ji50.

Discussion.Thus, Lagrangian~23! gives a required varia-
tional formulation for the problem of motion and interactio
between localized frozen-in vortex structures@described by
the mappingR(n,j,t)] and acoustic degrees of freedom@de-
scribed by the fieldsn(r,t) and w(r,t)]. This variational
principle definitely can serve as a basis for future appro
mate analytical and numerical studies dealing with redu
dynamical systems where only most relevant degrees of f
dom will be taken into account.

The function C(n1 ,n2) can be useful to investigat
nearly stationary flows, since the effective Hamiltonian

H̃5H1E C~n1 ,n2!~@Rn1
3Rn2

#•Rj!n~R!d2n dj

has an extremum on stationary flows with the velocity fieldv
everywhere directed along vortex surfaces. However,
should remember that existence of globally defined vor
surfaces~and thus the functionC) is an exceptional case in
the variety of three-dimensional vector fields. In the gene
case one should use„v0(a)•“a…R(a,t)da instead of
Rj(n,j,t)d2ndj in Lagrangian ~23! and no function
C(n1 ,n2), since the labelsn are not defined.

As an explicit example, the expression for the Ham
tonian functional of the Eulerian hydrodynamics in terms
R(n,j,t), n(r,t), andw(r,t) is given below:

HE5E n

2 S“w1E @Rj3~r2R!#d2ndj

4pur2Ru3
D 2

dr

1E @«~n!1nU~r,t !#dr. ~25!

Generalization of the above theory for multifluid mode
is straightforward.
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