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Variational principle for frozen-in vorticity interacting with sound waves

V. P. Ruban
L. D. Landau Institute for Theoretical Physics, 2 Kosygin Street, 119334 Moscow, Russia
(Received 15 May 2003; published 8 October 2003

General properties of conservative hydrodynamic-type models are treated from positions of the canonical
formalism adopted for liquid continuous media. A variational formulation is found for motion and interaction
of frozen-in localized vortex structures and acoustic waves in a special description where dynamical variables
are, besides the Eulerian fields of the fluid density and the potential component of the canonical momentum,
also the shapes of frozen-in lines of the generalized vorticity. This variational principle can serve as a basis for
approximate dynamical models with reduced number of degrees of freedom.
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In many physical systems the motion of continuous liquidlations between the concentrations are homogeneous in space
media can be approximately described by hydrodynamicand time, so the macroscopically averaged physical state of
type equations having a remarkable mathematical structurdie medium at a given poimt=(x,y,z) at a given time mo-
based on an underlying variational least action principle inmentt is completely determined by two quantities, namely,
the Lagrangian descriptiofsee, for instance, Ref§1—6], by a scalan(r,t), which is proportional to the concentration
and references therginThe characteristic feature of the Of conservative particles of a definite sort, and by a vector
hydrodynamic-type systems is that they possess an infinitdf.t), the corresponding density of flow. The figlds re-
number of specific integrals of motion related to thelated by the continuity equation to the fietd
freezing-in property of canonical vorticity. Thus, hydrody- o
namic equations describe an interaction between “soft” de- ng+divj=0, (1)
grees of freedom, the frozen-in vortices, and “hard” degrees o ] o
of freedom, the acoustic modes. However, in the Euleriarfvhere the subscript is used to denote the partial derivative. It
description of flows by the density and by the velocity the IS clear thaj=nw, wherew(r,t) is the macroscopic velocity
canonical momentupfields, the vorticity and the sound field. Let each point of the fluid medium be marked by a
waves are “mixed.” Another point is that due to unresolved label a=(2a;,a;,az), so the mapping=x(a;t) is the full
freezing-in constraints, the Eulerian equations of motion dd-agrangian description of the flow. The less exhaustive de-
not follow directly from a variational principlésee Ref[4]  scription of the flow by the fieldsi(r,t) andj(r,t) is com-
for discussion monly referred as the Eulerian description. The relations be-

This work has two main purposes. The first purpose is tgween the Eulerian fields and the Lagrangian mapping are the
introduce such a general description of ideal flows that soffollowing:
and hard degrees of freedom are explicitly separated and the
frozen-in property of the vorticity is t_akgn into account._Thg n(r,t)=f S(r—x(at))da, %)
second purpose is to formulate a principle of least action in
this representation. As a result, the acoustic waves will be
described by the Eulerian fields of the fluid density and the .
potential component of the canonical momentum, while the J(r:t):f o(r—x(a,t))x(at)da, ()
canonical vorticity will be represented as a continuous dis-

tribution of frozen-in vortex linegthe so-called formalism of g they satisfy the continuity equation automatically.
vortex lines[7-10], which previously was applied only to  Neglecting all dissipative processghie to viscosity, dif-
static d_ensny prgf!le)s T.h.e L.agranglan of thls dynamlca_ll fusion, etc) and assuming that internal properties of the fluid
system is a nontrivial unification of the canonical Lagrangianagre homogeneouuch as the specific entropy in adiabatic
corresponding to purely potential flows, with a generalizedfjows or the temperature in isothermal flowthe trajectories
Lagrangian of vortex lines. , _ r=x(at) of fluid elements are determined by the variational
Generalized Euler equatioypically in a complex clas- rinciple 8(fZdt)/sx(a,t)=0, with the Lagrangian of a

S|c.al_system' on the microscopic Ievel_there are permanen_tlgpecial general form actually depending only on the Eulerian
existing particles of several kinds, for instance, molecules ”}ireldsn(r t) andj(r.1):

a gas or the electrons and ions in a plasma. In a genera
situation, different components can have different macro- ~ ,
scopically averaged velocities near the same point and/or dif- L{x(a),x(a)} = L{n(1),j(N}Hnix,ifxx) - (4)
ferent relative concentrations in separated points. In such

cases, each population of the complex fluid should be takehlere the brace$- - -} are used to denote functional argu-
into consideration individually, for example, as in the widely ments as against usual scalar or vector arguments that are
known two-fluid plasma model discussed later in this work.denoted by the parentheses (). The equation of motion,

For simplicity we first consider the case when the macro-corresponding to Lagrangiai), has a remarkable general
scopic velocities of all components coincide and mutual restructure. The usual variational Euler-Lagrange equation
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d oT ST The canonical momentum coincides with the velocity
_——_— field, p=j/n=v, and the Hamiltonian is the total energy ex-
dt ox(a) ox(a) pressed in terms af andp:
in the Eulerian representation has the foigeneralized Eu- p
ler equation HEIJ (n5+s(n)+nU(r,t) dr.
J (8L j SC S The equations of motio7) and (8) with this Hamiltonian
—|—=|=|=Xcurl| = | |+ V| —/, (5)  take the known form
at\ Jj n 0] on
pi=[pXcurlp] -V (p?2 +&'(n)+U), n,+div(np)=0.
where the variational derivativé/dj is taken at fixed L . _
n(r,t), while the variational derivativeSZ/sn is taken at Second example: relativistic fluid dynamiisthe general
fixed j(r,t) (compare with Refs[6—9], where this equation '€lativity the continuity equation itsee Ref[1])
is written in terms ofn and v and thus looks differeint 1 9 dxi
Equation(5) together with the continuity equatidi) com- —_— —( ‘/—gn—) =0,
pletely determine the time evolution of the fieldér,t) and V=g X' ds
iy . wheredx/ds is the 4-velocity of the fluid element passing

Hamiltonian variables.In the Hamiltonian description
adopted for fluids as it is discussed in R¢#5-9,1]], instead
of the fieldj, the variational derivative of the Lagrangian,
p= 8L/ 8}, is used(the canonical momentumThe Hamil-
tonian functional is defined as the Legendre transformation

through a point {,r), the scalam is the concentration of
conservative particles in the locally comoving frame of ref-
erence, andg=det|g;| is the determinant of the metric
tensor g (t,r). Therefore n=.—gn(dt/ds), j“

=+—gn(dx“®/ds), and
5L ~ . —
H{n,p}zf (E-'>dr—£, (6) N= (oo’ +200,Nj*+Gapi “iP) /N - 0. (10

The invariant expression for the action functional implies the
wherej should be expressed in termswandn. The equa- Lagrangian in the fornjcompare with Refs[7,9,10)
tions of motion (5) and (1) now have the noncanonical

. . . n2+2 an'a+ N iai B
Hamiltonian structurg4,7,8]: ﬁg.r.:—J 8( Voo Goa)" T Gapl™) J=gdr,  (11)
(1o 9
P=1nlsp xeurlp = Vi 5| " \Where e(n) is the relativistic density of the internal fluid

energy including the rest energthe equation of stajeThe
canonical momentum

: 8

aw| o
ny=—div| — .
5p D :8/(?]) _(90an+gaﬁ’]ﬁ)
These equations can be written a@s={p,H} and n, : VG0 +200aNj “+ Gupi “i”
={n,H}, where the noncanonical Poisson bracket is give
by the following expressiofsee Refs[2,4,7] and references

therein about details

rhepends in a complicated manner onj, and g;,. This
makes it impossible, in general case, to present an analytical
expression for the corresponding Hamiltonian functional,
but, of course, it cannot cancel the existence of the Hamil-
”dr tonian in mathematical sense.

{.7:,7'{}=j %(V 5]-") 5}"( oH

5_p ~on 5_p Third example: Lagrangian functional of the two-fluid
plasma modelAnalogously, multicomponent hydrodynami-
curlp | 6F oH : . .
+ j — | —x—1]dr. 9) cal models can be investigated, where several fieftlsand
n op  dp i@ are present corresponding to different sorts of particles,

i , i , with g=1,2,... Q. The Hamiltonian noncanonical equa-
First example: Eulerian hydrodynamicket us consider  tjong of motion for such models have the same general struc-
the usual Eulerian hydrodynamics. In this simple caB8& e a5 discussed above, and they should be written for each
the density of the fluid and the Lagrangian is the d'ﬁerencecomponent. Here we briefly discuss how to derive the La-

between the total macroscopic kinetic energy and the tOtad;rangian functional for the physically important two-fluid

potential energy including the thermal internal energy: (nonrelativisti¢ plasma model(for more details see Ref.
5 [11]). Let us consider a set of electrically charged classical
) int particles with massem, and electric charges,. In
Leg= ——¢&(n)—nU(r,t) |dr, point pa X ; a ; 9€8a. .
E f(Zn &(n) (rt Ref. [1], the microscopic Lagrangian of such a system is

presented, which is approximately valid up to the second
wheree(n) is the density of the internal energy addr,t) is  order inv/c, since excitation of the free electromagnetic
the potential of an external force. field by moving charges is not significant:
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mo? 1 ee m.v? tum in terms of auxiliary variables exist that fix topological
ala aCh ala . L .
gmmzz 3 5 structure of vortex lines, and then a variational formulation
a atb [ra=tel T 8¢ becomes possible. A known example of such auxiliary vari-
ables is the Clebsch variablesee, e.g., Ref$2,4,12,13 for
1 €ap discussion and more referengeswhenp=V ¢+ (\/n)V u,

vp+(van Nap) 1.
[va-vp+(Va: Nap)(Up-Nav) ] and (,¢), (\,u) are two pairs of canonically conjugate

variables. But the Clebsch representation usually is not suit-
able for studying localized vortex structures such as vortex
Herer(t) are the positions of the point charges, v.(t) f|Iame_nts. Below we cqn3|der another rgpresentatlon for the
. . . ; . canonical momentum field, when dynamical variables are the
=r,(t) are their velocities, andgy(t) are the unit vectors in - ghapes of vortex lines. For a nearly static density profile,
the direction betweeg, ande,. The fI.I’St' double.sum m_Eq. ~no(r), such description was used in Ref8,9] to study
(12) corresponds to the el_ectrostatlc interaction, Whll_e th'?slow flows in spatially inhomogeneous systems. Now we are
second double sum describes the magnetic interaction Vidying to introduce a variational formulation valid for the
quasistationary magnetic fielthe case without extenal gonera case, since the functiofr,t) is also an unknown
electric and magnetic fields is considerett is important  \ariapie. It will be demonstrated that variational principle

that for a system with huge number of particles the magnetiGith | agrangian(23) determines correct equations of motion
energy can be of the same order even largeéras the mac- o the shapes of frozen-in vortex lines, for the potential

roscopic kinetic energy produced by the first ordinary sum i”component of the canonical momentum field, and for the
Eq. (12), while the terms of the fourth order on the velocities density profilen(r,t).

are often negligible.

In the simplest case, plasma contains identical i@ash
with the masZM and with the charge+Ze) and the elec-
trons (massm, charge—e). Then, the system will be ap- p(r,t) =V o(r,t)+curl Le(r,t). (14)
proximately described in terms of the concentratignt) of
electrons and the densikr,t) of their flow, and correspond-  aAccordingly, the fieldj is decomposed:
ing ion fieldsN(r,t) andJ(r,t), normalized to the elemen-

E a#b |ra_rb|

12

So, we decompose the momentum field onto the potential
component and the divergence-free component:

tary electric charge, soN=ZN; .  O0H OH o
Neglecting all dissipative processes that take place due to 1= 5_p :$+CU”%EJH+JL . (19
collisions of the particles, we derive from E@.2) the fol- H
lowing Lagrangian functional Obviously, the continuity equation results in the relation
M m_ 2me’ VA In=—j. 16
Lor= f PINRET™ [curllu—j)i]ﬂdr m=h (10
¢ For the frozen-in vorticity field we use the so-called vor-
e’ dr,dr, tex line representation. In the simplest form when the lines
- ?f f =t [N(ry)—n(ry) J[N(rp) —n(ry)] are closed, it reads as followior details and discussion see
Ref. [8]),
fT| AR }d (13
- Nin—== +T,; 5 Ing==—|dr,
(T 27 ZR(T) w(r,t)=J d?v fﬁ o(r—=R(v,§V))Re(v,&1) d§
N
where J—j), is the divergence-free component of the total
current. The magnetic energy(B%/8x)dr is included into _ Re(v.€0) 17)
this Lagrangian, where the magnetic field 8 defloR/a(v, )| | _,"

=(4melc)curl }(J—j),. The terms with Teninn and

(Ti/Z)NInN (approximate expressions for the densities ofwhere the label v=(v;,v,)eN belongs to a two-

the thermal free energyhave been introduced in order that dimensional manifold\ and singles out an individual vortex

the macroscopic equations of motion contain the pressurgne, while an arbitrary longitudinal parametgdetermines a

terms such as-Vp/n [see the last term in Eq5)], where  point on the line. The Jacobian of the mappiR(y,&,t) is

p~nT, is the pressure of the hot electron gas, which is supgenoted as dmwg(yf)”:(mle RVz] ‘Re).

posed to pe isothermal with a t.emperatﬁq?e . The divergence-free component of the canonical momen-
Interaction between frozen-in vortex lines and acoustic,, field is now given by the expression

modes.The Hamiltonian noncanonical equatiof¥ and(8)

do not follow directly from a variational principle. The math- [R.(r—R)]d2vdé

ematical reason for this is a degeneracy of the corresponding P =cur|‘1m(r,t):f £ . @19

noncanonical Poisson bracké&), which is discussed, for 4m|r—R|?

instance, in Refs[2,4]. The degeneracy results in the

frozen-in property for the canonical vorticity fieldo The vorticity variationde(r,t), induced by a variation

=curlp. However, representations of the canonical momen<sR(v,&,t) of the vortex lines, takes the forf8]
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5w(r,t)=curl,de2V § S(r—R(v,&1)[SRXR,] d¢, (19)

which follows directly from Eq.(17).

It should be noted that in the case of arbitrary
topology of the vortex lines, one has to just replace in th

above expressions R(v,¢,t)—R(a,t)
—(wo(a)- Vo)R(a,t)da, see Ref[8].
Equation(19) results in the important relatiod§]

and R,d*vdé

(‘)‘H _ .
g =[RexiL(R], (20
| R -
= Curl deﬂﬁR/ﬁ(Vyg)” R=r .

Therefore the equation of motion for the vorticityy,
=curl[v X @], with v=(6H/dp)/n, means

Ry X Rg [J|+Jl
def|oR/d(v,£)|

T L x|+, (), (22

R=r

whereV (v4,v,) is some arbitrary function of two variables.
A possible choice iaF =0, but for general purposes we will

consider belowd #0.

Using Eqs(15), (16), (20), and(22), one can verify that if
the quantitieR(v,&,t), n(r,t), ande(r,t) obey equations of
motion corresponding to the following Lagrangian:

Ly.s=— f nedr—H{n,V ¢+ curl *{R}}

+ f S(r—R(»,&,0)([RXR]- VA7 tn)d2y dé dr

- [ WOr (R <R RORIE G, (29

then Eqgs.(7) and (8) are satisfied. Indeed, the variation of

JL,.dt by 6R(v,£,t) gives the equation
[ReX R N(R)—[RX[(R)]

SH
= ——n(R)de

5R qul(v)i

(24)

JR ‘
A(v,§)

PHYSICAL REVIEW B8, 047302 (2003

which is easily recognized as E@2). Variation by én(r,t)
results in the potential component of E@):

RXR;

defloRIa(v, ||, on V-

-1 _
_§0t+Ar Vr' - _5n
R=r

&inally, the variation byde(r,t) gives the continuity equa-
tion n+V.j=0.

DiscussionThus, Lagrangiari23) gives a required varia-
tional formulation for the problem of motion and interaction
between localized frozen-in vortex structufeescribed by
the mappindR(v,£,t)] and acoustic degrees of freeddde-
scribed by the field:(r,t) and ¢(r,t)]. This variational
principle definitely can serve as a basis for future approxi-
mate analytical and numerical studies dealing with reduced
dynamical systems where only most relevant degrees of free-
dom will be taken into account.

The function ¥(v,,v,) can be useful to investigate
nearly stationary flows, since the effective Hamiltonian

H=H+ f W (v1,72)([R, XR,,]-RIN(R)d?v d&

has an extremum on stationary flows with the velocity field
everywhere directed along vortex surfaces. However, one
should remember that existence of globally defined vortex
surfacegand thus the functiod’) is an exceptional case in
the variety of three-dimensional vector fields. In the general
case one should usdwy(a)-V,)R(at)da instead of
Re(v,&t)d*vd¢ in Lagrangian (23) and no function
W (vq,v,), since the labelg are not defined.

As an explicit example, the expression for the Hamil-
tonian functional of the Eulerian hydrodynamics in terms of
R(v,¢,1), n(r,t), ande(r,t) is given below:

e jg(w [

+ f [e(n)+nU(r,t)]dr.

[Rex (r—R)]d?vdg)

dr
4mlr—RJ?

(25

Generalization of the above theory for multifluid models
is straightforward.
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